MLOps Conference

MLOps Conference

On DataOps, productionizing ML models, and running experiments at scale.

Make a submission

Submissions are closed for this project

Machine Learning (ML) is at the helm of products. As products evolve with time, so is the necessity for ML to evolve. In 2010s, we saw DevOps culture take the forefront for engineering teams. 2020s will be all about MLOps.

MLOps stands for Machine Learning Operations. MLOps mainly focuses on workflows, thought processes and tools that are used in creating ML models, and their evolution over time. The workflows for ML at organizations are different as the problem space, maturity of teams and experience with ML tools are widely different.

MLOps relies on DataOps. DataOps is about Data operations, and helps define data and SLOs for data - how they are stored, managed and mutate over time - thereby providing the foundations for sound ML. The success and failure of ML models depends heavily on DataOps, where data is well-managed and brought into the system in a well thought out manner. ML and data processes have to evolve to provide insights into the reasons as to why certain models are not behaving as before.

Productionizing ML models is a challenge, but so is running experiments at scale. MLOps caters not only to scaling ML models in production, but also helps in providing guidelines and thought processes to support rapid prototyping and research for ML teams.

MLOps Conference 2021 edition

The 2021 edition is curated by Nischal HP, Director of Data at Scoutbee.

The conference covers the following themes:

  1. Machine Learning Operations
  2. Machine Learning in Production
  3. Privacy and Security in Machine Learning
  4. Tooling and frameworks in Machine Learning
  5. Economies of Machine Learning

Speakers from Doordash, Twilio, Scribble Data, Microsoft Research Labs India, Freshworks, Aampe, Myntra, Farfetch and other organizations will share their experiences and insights on the above topics.

Schedule: https://hasgeek.com/fifthelephant/mlops-conference/schedule

Who should participate in MLOps conference?

  1. Data/MLOps engineers who want to learn about state-of-the-art tools and techniques.
  2. Data scientists who want a deeper understanding of model deployment/governance.
  3. Architects who are building ML workflows that scale.
  4. Tech founders who are building products that require ML or building developer productivity products for ML.
  5. Product managers, who are seeking to learn about the process of building ML products.
  6. Directors, VPs and senior tech leadership who are building ML teams.

Contact information: Join The Fifth Elephant Telegram group on https://t.me/fifthel or follow @fifthel on Twitter. For inquiries, contact The Fifth Elephant on fifthelephant.editorial@hasgeek.com or call 7676332020.

Hosted by

The Fifth Elephant - known as one the best #datascience and #machinelearning conference in Asia - is transitioning into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Supported by

Scribble Data builds feature stores for data science teams that are serious about putting models (ML, or even sub-ML) into production. The ability to systematically transform data is the single biggest determinant of how well these models do. Scribble Data streamlines the feature engineering proces… more

Promoted

Privacy Mode is a forum for discussions on privacy, data security and compliance. Participate and collaborate with India’s pioneering privacy-tech community. Industry surveys: In 2020, Privacy Mode executed two surveys: more

Machine Learning (ML) is at the helm of products. As products evolve with time, so is the necessity for ML to evolve. In 2010s, we saw DevOps culture take the forefront for engineering teams. 2020s will be all about MLOps.

MLOps stands for Machine Learning Operations. MLOps mainly focuses on workflows, thought processes and tools that are used in creating ML models, and their evolution over time. The workflows for ML at organizations are different as the problem space, maturity of teams and experience with ML tools are widely different.

MLOps relies on DataOps. DataOps is about Data operations, and helps define data and SLOs for data - how they are stored, managed and mutate over time - thereby providing the foundations for sound ML. The success and failure of ML models depends heavily on DataOps, where data is well-managed and brought into the system in a well thought out manner. ML and data processes have to evolve to provide insights into the reasons as to why certain models are not behaving as before.

Productionizing ML models is a challenge, but so is running experiments at scale. MLOps caters not only to scaling ML models in production, but also helps in providing guidelines and thought processes to support rapid prototyping and research for ML teams.

MLOps Conference 2021 edition

The 2021 edition is curated by Nischal HP, Director of Data at Scoutbee.

The conference covers the following themes:

  1. Machine Learning Operations
  2. Machine Learning in Production
  3. Privacy and Security in Machine Learning
  4. Tooling and frameworks in Machine Learning
  5. Economies of Machine Learning

Speakers from Doordash, Twilio, Scribble Data, Microsoft Research Labs India, Freshworks, Aampe, Myntra, Farfetch and other organizations will share their experiences and insights on the above topics.

Schedule: https://hasgeek.com/fifthelephant/mlops-conference/schedule

Who should participate in MLOps conference?

  1. Data/MLOps engineers who want to learn about state-of-the-art tools and techniques.
  2. Data scientists who want a deeper understanding of model deployment/governance.
  3. Architects who are building ML workflows that scale.
  4. Tech founders who are building products that require ML or building developer productivity products for ML.
  5. Product managers, who are seeking to learn about the process of building ML products.
  6. Directors, VPs and senior tech leadership who are building ML teams.

Contact information: Join The Fifth Elephant Telegram group on https://t.me/fifthel or follow @fifthel on Twitter. For inquiries, contact The Fifth Elephant on fifthelephant.editorial@hasgeek.com or call 7676332020.

Videos

See all
Maintaining Machine Learning model accuracy through monitoring

Maintaining Machine Learning model accuracy through monitoring

Swaroop Ch, Staff Engineer, Machine Learning Platform at Doordash

24 minutes29 July 2021
Jupyter to Jupiter : scaling multi-tenant ML pipelines

Jupyter to Jupiter : scaling multi-tenant ML pipelines

Vishal Gupta, Machine Learning Engineer at Freshworks

49 minutes29 July 2021
Story-telling as a method for building production-ready Machine Learning systems

Story-telling as a method for building production-ready Machine Learning systems

Schaun Wheeler, Co-founder at Aampe

1 hour29 July 2021
Privacy attacks in Machine Learning systems - discover, detect and defend

Privacy attacks in Machine Learning systems - discover, detect and defend

Upendra Singh, Machine Learning Architect at Twilio

27 minutes29 July 2021
MLOps for startups

MLOps for startups

Nirant Kasliwal, ex-Machine Learning/Data Science Lead at Verloop. Introducer: Paul Meinhausen, founder at Aampe

37 minutes29 July 2021
Make a submission

Submissions are closed for this project

Hosted by

The Fifth Elephant - known as one the best #datascience and #machinelearning conference in Asia - is transitioning into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Supported by

Scribble Data builds feature stores for data science teams that are serious about putting models (ML, or even sub-ML) into production. The ability to systematically transform data is the single biggest determinant of how well these models do. Scribble Data streamlines the feature engineering proces… more

Promoted

Privacy Mode is a forum for discussions on privacy, data security and compliance. Participate and collaborate with India’s pioneering privacy-tech community. Industry surveys: In 2020, Privacy Mode executed two surveys: more