Jul 2019
22 Mon
23 Tue
24 Wed
25 Thu 09:15 AM – 05:45 PM IST
26 Fri 09:20 AM – 05:30 PM IST
27 Sat
28 Sun
Make a submission
Accepting submissions till 15 Jun 2019, 01:00 PM
1. Meet Peter Wang, co-founder of Anaconda Inc, and learn about why data privacy is the first step towards robust data management; the journey of building Anaconda; and Anaconda in enterprise.
2. Talk to the Fulfillment and Supply Group (FSG) team from Flipkart, and learn about their work with platform engineering where ground truths are the source of data.
3. Attend tutorials on Deep Learning with RedisAI; TransmorgifyAI, Salesforce’s open source AutoML.
4. Discuss interesting problems to solve with data science in agriculture, SaaS perspective on multi-tenancy in Machine Learning (with the Freshworks team), bias in intent classification and recommendations.
5. Meet data science, data engineering and product teams from sponsoring companies to understand how they are handling data and leveraging intelligence from data to solve interesting problems.
For more information about The Fifth Elephant, sponsorships, or any other information call +91-7676332020 or email info@hasgeek.com
Sponsorship Deck.
Email sales@hasgeek.com for bulk ticket purchases, and sponsoring 2019 edition of JSFoo:VueDay.
Hosted by
Logesh kumar
@infinitylogesh
Submitted May 31, 2019
Deep learning models are always known to be a black box and lacks interpretability compared to traditional machine learning models. So,There is alway a hesitation in adopting deep learning models in user facing applications (especially medical applications). Recent progress in NLP with the advent of Attention based models , LIME and other techniques have helped to solve this. I would like to walkthough each of the techniques and share my experience in deploying explainable models in production.
1.Brief introduction on the importance of interpretability
2.Introduction to different interpretabilty techniques
2.1 Attention based models
2.2 LIME
2.3 Extraction based models
2.4 other techniques
3.Demo of the techniques.
No specific requirements.
I am Data scientist with a focus on NLP. I have first hand experience of facing problems occuring because of non intrepretability of deep learning models and also I have experience in deploying deep learning based NLP models from protype to production
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}