The Fifth Elephant 2012

Finding the elephant in the data.

What are your users doing on your website or in your store? How do you turn the piles of data your organization generates into actionable information? Where do you get complementary data to make yours more comprehensive? What tech, and what techniques?

The Fifth Elephant is a two day conference on big data.

Early Geek tickets are available from fifthelephant.doattend.com.

The proposal funnel below will enable you to submit a session and vote on proposed sessions. It is a good practice introduce yourself and share details about your work as well as the subject of your talk while proposing a session.

Each community member can vote for or against a talk. A vote from each member of the Editorial Panel is equivalent to two community votes. Both types of votes will be considered for final speaker selection.

It’s useful to keep a few guidelines in mind while submitting proposals:

  1. Describe how to use something that is available under a liberal open source license. Participants can use this without having to pay you anything.

  2. Tell a story of how you did something. If it involves commercial tools, please explain why they made sense.

  3. Buy a slot to pitch whatever commercial tool you are backing.

Speakers will get a free ticket to both days of the event. Proposers whose talks are not on the final schedule will be able to purchase tickets at the Early Geek price of Rs. 1800.

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Karthik Visweswariah

Building Watson -- A Brief Overview of DeepQA and the Jeopardy! Challenge

Submitted Jul 4, 2012

We will give an overview of the building of Watson a computer system
that was able to defeat human grand champions in the game of Jeopardy
(a popular quiz show in the United States)

Outline

A computer system that can directly and precisely answer natural
language questions over an open and broad range of knowledge has been envisioned by scientists and writers since the advent of computers themselves. While current computers can store and deliver a wealth of digital content created by humans, they are unable to operate over it in human terms. The quest for building a computer system that can do open-domain Question Answering is ultimately driven by a broader vision that sees computers operating more effectively in human terms rather than strictly computer terms. They should function in ways that understand complex information requirements, as people would express them, for example, in natural language questions or interactive dialogs. Computers should deliver precise, meaningful responses, and synthesize, integrate, and rapidly reason over the breadth of human knowledge as it is most rapidly and naturally produced – in natural language text.

The DeepQA project at IBM shapes a grand challenge in Computer Science that aims to illustrate how the wide and growing accessibility of natural language content and the integration and advancement of
Natural Language Processing, Information Retrieval, Machine Learning,
Knowledge Representation and Reasoning, and massively parallel
computation can drive open-domain automatic Question Answering
technology to a point where it clearly and consistently rivals the
best human performance. A first stop along the way was the Jeopardy!
Challenge, where a computer system beat human grand champions in the game of Jeopardy!. In this talk, we will give an overview of the
DeepQA project and the Jeopardy! Challenge.

Speaker bio

Karthik Visweswariah is a Senior Technical Staff Member at IBM
Research, India. His primary interests are in statistical modelling
applied to text and speech. Prior to joining IBM Research, India in
2008 he spent 8 years at IBM’s T.J. Watson Research Centre in the
Human Language Technologies group working on improving speech
recognition technologies in IBM’s products. His current focus is on
improving machine translation for translating between Indian languages and English. He has published over 60 papers in these areas in various refereed journals and conferences. He obtained his Ph.D from Princeton University in 1999 and B.Tech from Indian Institute of Technology, Madras.

Comments

{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more