Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
usha rengaraju
Abstract –
Computer Vision has lots of applications including medical imaging, autonomous
vehicles, industrial inspection and augmented reality. Use of Deep Learning for
computer Vision can be categorized into multiple categories for both images and
videos – Classification, detection, segmentation & generation.
Having worked in Deep Learning with a focus on Computer Vision have come
across various challenges and learned best practices over a period
experimenting with cutting edge ideas. This workshop is for Data Scientists &
Computer Vision Engineers whose focus is deep learning. We will cover state of
the art architectures for Image Classification, Image Segmentation best practices in training and tuning deep neural networks. It will be hands on session in PyTorch v1.0.
The workshop takes a structured approach. First it covers basic techniques in
image processing and python for handling images and building Pytorch data
loaders. Introduce CNN based architectures for Image Classification (Resnet). Discuss ideas from cutting edge papers on Computer Vision and implement hands on in class best practices in on Image Classification and Semantic Segmentation architecture. Discuss how to train and tune deep neural networks.
Total Duration of Workshop – 6 hours
Outline-
Part I – Duration: 1.5 hours
Part III – Duration: 1.5 hours
Target Audience –
• Computer Vision Engineers
• ML/Deep Learning Engineers/Architects
• Data Scientist – who wants to pick up Computer Vision
• Deep Learning practitioners in general
• PyTorch developers
Who should not attend this workshop –
Practitioners who are not interested in ML/DL/Computer Vision should not attend this workshop.
Software Requirements – Laptops with internet connectivity, PyTorch v1.0, Python v3.6, OpenCV to installed in the machine, good to have access to GPU else will use google colab to run hands on experiments in class.
Saurabh Jha
Currently authoring a book on “Deep Learning with PyTorch” with Apress. Has overall around 12 years of experience working in Data Science. Currently leads the Deep Learning team at Dell IT working out of CFO office (Tom Sweet) on mandate to transform Cash Application towards making back office Finance frictionless- Automating the data entry through Deep Learning. Set up a deep learning team in Dell from scratch. Previously head of Advanced Analytics for Infocepts build the analytics team from scratch. He has vast experience working with terabyte scale data and has been developing solutions in AI space. Have worked for consulting companies in India (PwC &vTeradata Professional Services) delivering data science solutions. Has strong experience in building data science practice from scratch and has diverse skills ranging from data engineering, bridge between business and technology, Information Modelling, data science. Has experience working with Banking and Insurance, FMCG & Retail. His research interests include Deep Learning, Computer Vision, and Information Retrieval. . Has earlier presented in World Machine Learning summit India organized by 1.21GWs, December 2018 on Semantic Segmentation and a workshop on Medical Imaging and gave talk at Microstrategy world on Advanced Analytics in 2016.
Achievements -
Usha Rengaraju
I am a polymath and unicorn data scientist with strong foundations in Economics, Finance, Business Foundations, Business Analytics and Psychology. I specialize in Probabilistic Graphical Models, Machine Learning and Deep Learning. I have completed Financial Engineering and Risk Management program from Columbia University with top honors, micromasters in Marketing Analytics from UC Berkeley and statistical analysis in Life Sciences specialization from Harvard. I am chapter lead/Co-Organizer of Women in Machine Learning and Data Science Bengaluru Chapter and Core organizing team member at WIDS Bengaluru .I have around 6 years of technical experience working in various companies like Infosys, Temenos, NeoEYED and Mysuru Consulting Group. I am part of dedicated group of experts and enthusiasts who explore Coursera courses before they open to the public, an ambassador at AIMed (an initiative which brings together physicians and AI experts), part time Data science instructor, mentor at GLAD (gladmentorship.com), mentor at JobsForHer and volunteer at Statistics without Borders. I developed the course curriculum for Probabilistic Graphical Models @ Upgrad which is taught by Professor Srinivasa Raghavan from IIIT Bangalore.
Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}