Anthill Inside 2019

A conference on AI and Deep Learning

Make a submission

Submissions are closed for this project

Taj M G Road, Bangalore, Bangalore

About the 2019 edition:

The schedule for the 2019 edition is published here:

The conference has three tracks:

  1. Talks in the main conference hall track
  2. Poster sessions featuring novel ideas and projects in the poster session track
  3. Birds of Feather (BOF) sessions for practitioners who want to use the Anthill Inside forum to discuss:
    - Myths and realities of labelling datasets for Deep Learning.
    - Practical experience with using Knowledge Graphs for different use cases.
    - Interpretability and its application in different contexts; challenges with GDPR and intepreting datasets.
    - Pros and cons of using custom and open source tooling for AI/DL/ML.

Who should attend Anthill Inside:

Anthill Inside is a platform for:

  1. Data scientists
  2. AI, DL and ML engineers
  3. Cloud providers
  4. Companies which make tooling for AI, ML and Deep Learning
  5. Companies working with NLP and Computer Vision who want to share their work and learnings with the community

For inquiries about tickets and sponsorships, call Anthill Inside on 7676332020 or write to


Sponsorship slots for Anthill Inside 2019 are open. Click here to view the sponsorship deck.

Anthill Inside 2019 sponsors:

Bronze Sponsor

iMerit Impetus

Community Sponsor

GO-JEK iPropal
LightSpeed Semantics3
Google Tact.AI

Hosted by

Anthill Inside is a forum for conversations about Artificial Intelligence and Deep Learning, including: Tools Techniques Approaches for integrating AI and Deep Learning in products and businesses. Engineering for AI. more

Willem Pienaar

Feast: Feature Store for Machine Learning

Submitted Aug 20, 2019

Features are key to driving impact with AI at all scales, allowing organizations to dramatically accelerate innovation and time to market. Willem Pienaar explain how GOJEK, Indonesia’s first billion-dollar startup, unlocked insights in AI by building a feature store called Feast, and some of the lessons they learned along the way.


GOJEK, Indonesia’s first billion-dollar startup, has seen an explosive growth in both users and data over the past three years. Today, it uses big data-powered machine learning to inform decision making in its ride-hailing, lifestyle, logistics, food delivery, and payment products, from selecting the right driver to dispatch to dynamically setting prices to serving food recommendations to forecasting real-world events. Hundreds of millions of orders per month, across 18 products, are all driven by machine learning.

Features are at the heart of what makes these machine learning systems effective. However, many challenges still exist in the feature lifecycle. Developing features from big data is often an engineering heavy task, with challenges in both the scaling of data processes and the serving of features in production systems. Teams also face challenges in enabling discovery, reducing duplication, improving understanding, and providing standardization of features throughout organizations.

Willem will explain the need for features at organizations like GOJEK and discuss the challenges faced in creating, managing, and serving them in production. He’ll describe how in partnership with Google, they designed and built a feature store called Feast to address these challenges and explore their motivations, the lessons they learned along the way, and the impact the feature store had on GOJEK. Finally, he will talk about the open source plans for Feast and their roadmap going forward.



Speaker bio

Willem Pienaar leads the data science platform team at GOJEK, working on the GOJEK ML platform, which supports a wide variety of models and handles over 100 million orders every month. His main focus areas are building data and ML platforms, allowing organizations to scale machine learning and drive decision making. In a previous life, Willem founded and sold a networking startup and was a software engineer in industrial control systems.


{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Nischal HP

Nischal HP

Document digitization - Rethinking it with Deep Learning

When you think about Document digitisation from a business optimization process perspective, just performing OCR does not truly solve the problem. We at omni:us are building AI systems to support the insurance industry by handling claims. In order to achieve this we are performing various human-esque activities on so many different types of documents like page / document classification, informati… more

26 Aug 2019