Jul 2019
22 Mon
23 Tue
24 Wed
25 Thu 09:15 AM – 05:45 PM IST
26 Fri 09:20 AM – 05:30 PM IST
27 Sat
28 Sun
Make a submission
Accepting submissions till 15 Jun 2019, 01:00 PM
Jul 2019
22 Mon
23 Tue
24 Wed
25 Thu 09:15 AM – 05:45 PM IST
26 Fri 09:20 AM – 05:30 PM IST
27 Sat
28 Sun
Accepting submissions till 15 Jun 2019, 01:00 PM
1. Meet Peter Wang, co-founder of Anaconda Inc, and learn about why data privacy is the first step towards robust data management; the journey of building Anaconda; and Anaconda in enterprise.
2. Talk to the Fulfillment and Supply Group (FSG) team from Flipkart, and learn about their work with platform engineering where ground truths are the source of data.
3. Attend tutorials on Deep Learning with RedisAI; TransmorgifyAI, Salesforce’s open source AutoML.
4. Discuss interesting problems to solve with data science in agriculture, SaaS perspective on multi-tenancy in Machine Learning (with the Freshworks team), bias in intent classification and recommendations.
5. Meet data science, data engineering and product teams from sponsoring companies to understand how they are handling data and leveraging intelligence from data to solve interesting problems.
For more information about The Fifth Elephant, sponsorships, or any other information call +91-7676332020 or email info@hasgeek.com
Sponsorship Deck.
Email sales@hasgeek.com for bulk ticket purchases, and sponsoring 2019 edition of JSFoo:VueDay.
Hosted by
Shrashti Gupta
@shrashtigupta90
Submitted Apr 10, 2019
Typical data processing and machine learning workloads includes heavy setups like Hadoop stack, Kafka, NoSQL databases, Application APIs and so on. Traditionally, these workloads run on top of dedicated setups which adds overhead to IT teams as well as developers in managing multiple clusters. It is a need of the hour to develop unified solution to manage all the workloads on single control plane. With the help of containerization and Kubernetes we can achieve that easily.
Apache Spark is an essential tool for data engineers and data scientists, offering a robust platform for a variety of applications ranging from large scale data transformation to analytics to machine learning. We are already convinced and adopting containers to improve our workflows by realizing benefits such as packaging of dependencies and creating reproducible artifacts
it makes total sense to run Spark with our rest of the solution already running on top of Kubernetes. Thanks to the Apache Spark and Kubernetes contributors who have put lot of efforts for bringing Apache Spark 2.3 with native Kubernetes support.
Basic knowledge of Kubernetes and Spark
Shrashti is a Google Cloud certified Data Engineer currently associated with Publicis Sapient. She has worked on multiple engagements with clients from Automobile as well Telecom domain. In current role, she is working on Hyper-personalized recommendation system for Automobile industry focused on Machine Learning in which she is responsible for handling Realtime data processing as well as batch data processing pipelines and extensively worked on Kubernetes for managing overall infrastructure.
https://drive.google.com/file/d/1Y9QPREzbWaRScWMpHYPRGpJSewlWN5q7/view?usp=sharing
Jul 2019
22 Mon
23 Tue
24 Wed
25 Thu 09:15 AM – 05:45 PM IST
26 Fri 09:20 AM – 05:30 PM IST
27 Sat
28 Sun
Accepting submissions till 15 Jun 2019, 01:00 PM
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}