Anthill Inside 2019

A conference on AI and Deep Learning

Make a submission

Submissions are closed for this project

Taj M G Road, Bangalore, Bangalore

About the 2019 edition:

The schedule for the 2019 edition is published here:

The conference has three tracks:

  1. Talks in the main conference hall track
  2. Poster sessions featuring novel ideas and projects in the poster session track
  3. Birds of Feather (BOF) sessions for practitioners who want to use the Anthill Inside forum to discuss:
    - Myths and realities of labelling datasets for Deep Learning.
    - Practical experience with using Knowledge Graphs for different use cases.
    - Interpretability and its application in different contexts; challenges with GDPR and intepreting datasets.
    - Pros and cons of using custom and open source tooling for AI/DL/ML.

Who should attend Anthill Inside:

Anthill Inside is a platform for:

  1. Data scientists
  2. AI, DL and ML engineers
  3. Cloud providers
  4. Companies which make tooling for AI, ML and Deep Learning
  5. Companies working with NLP and Computer Vision who want to share their work and learnings with the community

For inquiries about tickets and sponsorships, call Anthill Inside on 7676332020 or write to


Sponsorship slots for Anthill Inside 2019 are open. Click here to view the sponsorship deck.

Anthill Inside 2019 sponsors:

Bronze Sponsor

iMerit Impetus

Community Sponsor

GO-JEK iPropal
LightSpeed Semantics3
Google Tact.AI

Hosted by

Anthill Inside is a forum for conversations about Artificial Intelligence and Deep Learning, including: Tools Techniques Approaches for integrating AI and Deep Learning in products and businesses. Engineering for AI. more

Vijay Gabale

Myths and Realities of Data Labeling for Deep Learning

Submitted Aug 15, 2019

In this BoF, we will explore data labeling tasks for NLP and CV problems. Specifically, we will discusses nuiances around defining, crowd sourcing and executing data labeling tasks, along with quality assurance processes. We shall also discuss machine aided data taggint to save cost, time and efforts on different data labeling tasks. Finally, we shall also touch upon feedback loopswhen some of the unseen and real-time inputs are labeled to fine-tune the deep learning models.


  • setting the context : data labeling for NLP and CV
  • how to define a data labeling task : novice vs expert
  • does crowd sourcing of data labeling really work : adv vs disadv.
  • how to manage in house data labeling teams : adv vs disadv
  • what is the criticality of the correctness of data labels
  • what is the experience and expertise expectation of data labelers
  • how to ensure correctness of data labels : manual vs automated checks
  • how to resolve labeling conflicts
  • how does an engineer know if she has enough labeled data
  • what are the time, cost, correctness trade-offs
  • how to ensure and execute class balanced data labeling
  • how to plan and execute weakly supervised data labeling
  • how to train models on small set of labeled data and generate ‘soft tags’ for the rest of the unlabeled data
  • how does one know if a model is performing well in practice on unseen and real-time inputs
  • how does feedback loop work when some of the unseen and real-time inputs are labeled to fine-tune the models


Familiarity with NLP, CV, Deep Learning

Speaker bio

Vijay is the co-founder and CTO of Infilect Technologies, a Computer Vision and Deep Learning start-up, builidng B2B SaaS products for global retail industry. Vijay has a PhD in CSE, from IIT Bombay. Vijay has worked as research scientist in IBM Research Labs.


{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Uma Sawant

Demystifying deep reinforcement learning

Details (date, time, venue) and tickets for this workshop are available here: more

15 Aug 2019