Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Make a submission
Accepting submissions till 01 Nov 2019, 04:20 PM
##About the 2019 edition:
The schedule for the 2019 edition is published here: https://hasgeek.com/anthillinside/2019/schedule
The conference has three tracks:
#Who should attend Anthill Inside:
Anthill Inside is a platform for:
For inquiries about tickets and sponsorships, call Anthill Inside on 7676332020 or write to sales@hasgeek.com
#Sponsors:
Sponsorship slots for Anthill Inside 2019 are open. Click here to view the sponsorship deck.
#Bronze Sponsor
#Community Sponsor
Hosted by
Priyanshu Chandra
@priyanshu_chandra
Submitted Sep 8, 2019
Good recommendation systems, as we all know, are a great way to acquire users, creating a delightful user experience for user engagement while driving incremental revenue. There is a lot of innovation and research in making recommendations systems understand the user preferences and hence personalise better.
At Hotstar, India’s largest premium streaming and entertainment platform, we have a scale of more than 200 million monthly active downloads of diverse demography and a variety of content catalog in terms of category, genre, ingestion rate, and liveliness-requirement (live video streaming). Due to each of these factors, we face this unique challenge of user behavior cycle varying according to each content type, because of which our recommendation systems demand to be smarter. For example we have entertainment content like movies and TV shows which get binge-watch kind of behavior, contrary to news channels which have daily cyclic watch patterns and live sports which have random and concentrated watch behavior. Coupled with this, our typical peak scale for a single online recommendation service is 2 million RPM!
In this talk, I am going to cover how do we take these diversity factors into consideration in designing our personalisation models at scale, to cater to different UI features collating and surfacing mixed variety of content. Will focus on how we use ensemble modelling for ranking and designing online and offline sub-models for different content types.
Basic ML knowledge.
Preferred : Basic techniques of recommendation systems like collaborative filtering.
Currently Working as a Machine Learning Engineer in Personalisation team at Hotstar building models to serve millions of diverse users and helping drive engagement. Undergraduate in Mathematics and Computing from IIT Guwahati. Geek by nature, like formulating and solving algorithmic and data science problems. New found interest in applying ML practically to solve real world problems, drive them to production and thus leaving a significant impact. Currently more intrigued by personalisation industry, as you get to analyse user behavior trends at large and solve problems accordingly.
On personal front, I am a couch potato always wanting to work out soon. (:
https://docs.google.com/presentation/d/1Eqn_ZI3Kms6RoFWA5L5eNTKxwREvcajiL65XKQtcfuk/edit?usp=sharing
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}