The Fifth Elephant round the year submissions for 2019

The Fifth Elephant round the year submissions for 2019

Submit a talk on data, data science, analytics, business intelligence, data engineering and ML engineering

Make a submission

Accepting submissions till 31 Dec 2020, 11:59 PM

If you missed the deadline for submitting your talk for The Fifth Elephant 2019 – to be held in Bangalore on 25 and 26 July – you can propose a talk here.

We are accepting talks on:

  1. Data engineering – engineering and architecture approaches; problems that teams were attempting to solve (and therefore the solutions that they built).
  2. ML engineering – engineering and architecture approaches; problems that teams were attempting to solve (and therefore the solutions that they built).
  3. Data science – and its applications in diverse domains.
  4. Open source algorithms
  5. Data privacy and its solutions in technology; engineering implementations of HIPPA compliance, GDPR and other data protection frameworks.
  6. Data security – standards, approaches to solving data security, challenges and problems to solve for data security at scale.
  7. Business intelligence – how non-technical teams are accessing data in companies to mine intelligence; approaches to BI; real-life case studies and applications of BI; what counts as business intelligence for businesses.
  8. Decision science.

Perks for submitting proposals:

Submitting a proposal, especially with our process, is hard work. We appreciate your effort.
We offer one conference ticket at discounted price to each proposer.
We only accept one speaker per talk. This is non-negotiable. Workshops may have more than one instructor.
In case of proposals where more than one person has been mentioned as collaborator, we offer the discounted ticket and t-shirt only to the person with who the editorial team corresponded directly during the evaluation process.

Selection criteria:

The first filter for a proposal is whether the technology or solution you are referring to is open source or not. The following criteria apply for closed source talks:

  1. If the technology or solution is proprietary, and you want to speak about your proprietary solution to make a pitch to the audience, you should pick up a sponsored session. This involves paying for the speaking slot. Write to fifthelephant.editorial@hasgeek.com
  2. If the technology or solution is in the process of being open sourced, we will consider the talk only if the solution is open sourced at least three months before the conference.
  3. If your solution is closed source, you should consider proposing a talk explaining why you built it in the first place; what options did you consider (business-wise and technology-wise) before making the decision to develop the solution; or, what is your specific use case that left you without existing options and necessitated creating the in-house solution.

The criteria for selecting proposals, in the order of importance, are:

  1. Key insight or takeaway: what can you share with participants that will help them in their work and in thinking about the ML, big data and data science problem space?
  2. Structure of the talk and flow of content: a detailed outline – either as mindmap or draft slides or textual description – will help us understand the focus of the talk, and the clarity of your thought process.
  3. Ability to communicate succinctly, and how you engage with the audience. You must submit link to a two-minute preview video explaining what your talk is about, and what is the key takeaway for the audience.

No one submits the perfect proposal in the first instance. We therefore encourage you to:

  1. Submit your proposal early so that we have more time to iterate if the proposal has potential.
  2. Talk to us on our community Slack channel: https://friends.hasgeek.com if you want to discuss an idea for your proposal, and need help / advice on how to structure it. Head over to the link to request an invite and join #fifthel.

Our editorial team helps potential speakers in honing their speaking skills, fine tuning and rehearsing content at least twice - before the main conference - and sharpening the focus of talks.

How to submit a proposal (and increase your chances of getting selected):

The following guidelines will help you in submitting a proposal:

  1. Focus on why, not how. Explain to participants why you made a business or engineering decision, or why you chose a particular approach to solving your problem.
  2. The journey is more important than the solution you may want to explain. We are interested in the journey, not the outcome alone. Share as much detail as possible about how you solved the problem. Glossing over details does not help participants grasp real insights.
  3. Focus on what participants from other domains can learn/abstract from your journey / solution. Refer to these talks from The Fifth Elephant 2017, which participants liked most: http://hsgk.in/2uvYKI9 and http://hsgk.in/2ufhbWb
  4. We do not accept how-to talks unless they demonstrate latest technology. If you are demonstrating new tech, show enough to motivate participants to explore the technology later. Refer to talks such as this: http://hsgk.in/2vDpag4 and http://hsgk.in/2varOqt to structure your proposal.
  5. Similarly, we don’t accept talks on topics that have already been covered in the previous editions. If you are unsure about whether your proposal falls in this category, drop an email to: fifthelephant.editorial@hasgeek.com
  6. Content that can be read off the internet does not interest us. Our participants are keen to listen to use cases and experience stories that will help them in their practice.

To summarize, we do not accept talks that gloss over details or try to deliver high-level knowledge without covering depth. Talks have to be backed with real insights and experiences for the content to be useful to participants.

Passes and honorarium for speakers:

We pay an honorarium of Rs. 3,000 to each speaker and workshop instructor at the end of their talk/workshop. Confirmed speakers and instructors also get a pass to the conference and networking dinner. We do not provide free passes for speakers’ colleagues and spouses.

Travel grants for outstation speakers:

Travel grants are available for international and domestic speakers. We evaluate each case on its merits, giving preference to women, people of non-binary gender, and Africans. If you require a grant, request it when you submit your proposal in the field where you add your location. The Fifth Elephant is funded through ticket purchases and sponsorships; travel grant budgets vary.

You must submit the following details along with your proposal, or within 10 days of submission:

  1. Draft slides, mind map or a textual description detailing the structure and content of your talk.
  2. Link to a self-recorded, two-minute preview video, where you explain what your talk is about, and the key takeaways for participants. This preview video helps conference editors understand the lucidity of your thoughts and how invested you are in presenting insights beyond the solution you have built, or your use case. Please note that the preview video should be submitted irrespective of whether you have spoken at past editions of The Fifth Elephant.
  3. If you submit a workshop proposal, you must specify the target audience for your workshop; duration; number of participants you can accommodate; pre-requisites for the workshop; link to GitHub repositories and a document showing the full workshop plan.

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Ravi Ranjan

@raviranjan03

Machine Learning Model Management with MLflow

Submitted Jul 15, 2019

Background
Data is the new oil and its size is growing exponentially day by day. Most of the companies are leveraging data science capabilities extensively to affect business decisions, perform audits on ML patterns, decode faults in business logic, and more. They run large number of machine learning model to produce results.

Problem Statement
Managing ML models in production is non-trivial. The training, maintenance, deployment, monitoring, organization and documentation of machine learning (ML) models – in short model management – is a critical task in virtually all production ML use cases. Wrong model management decisions can lead to poor performance of a ML system and can result in high maintenance cost and less effective utilization. Below are the key concern for model management:

  1. Computational challenges: machine learning model definition and validation, decisions on model retraining, adversarial settings.
  2. Data management challenges: lack of a declarative abstraction for the whole ML pipeline, querying model metadata, model interpretation.
  3. Engineering challenges: multiple tools and frameworks make integration complex, heterogeneous skill level of users, backwards compatibility of trained Models and hard to reproduce the training result.

Existing Solution
There are custom ML platform to address the above concerns such as FBLearner by Facebook and Michelangelo by Uber but they have their own limitations like:

  1. They standardize the data preparation, training and deployment loop specific to particular platform and business needs.
  2. They are limited to a few algorithms and frameworks.
  3. They tied to one company infrastructure and hard to open source.

Why MLflow?
Databricks team found above concerns as their motivation to develop MLflow as an open source and cloud agnostic machine learning model management platform. Benefits of MLflow from machine learning model management:

  1. Works with any ML library and language.
  2. They are platform independent i.e. ML models run in same way anywhere example local system or any cloud platform.
  3. Designed to be useful for 1 or 10000 person organisation.

Outline

Key focus area for Machine Learning Model Management with MLflow:

  1. Managing ML models in production is non-trivial. What are the challenges and concerns of machine learning management lifecycle?
  2. What is machine learning model management?
  3. Motivation and concepts behind introduction of MLflow
  4. How to solve problem of model management using MLflow?
  5. MLflow components
  6. Realtime problem and use case

Requirements

Basic understating of machine learning and its workflow

Speaker bio

Ravi Ranjan is working as Senior Data Scientist at Publicis Sapient. He is part of Centre of Excellence and responsible for building machine learning model at scale. He has worked on multiple engagements with clients mainly from Automobile, Banking, Retail and Insurance industry across geographies. In current role, he is working on Hyper-personalized recommendation system for Automobile industry focused on Machine Learning, Deep learning, Realtime data processing on large scale data using MLflow and Kubeflow.
He holds Bachelor degree in Computer Science with proficiency course in Reinforcement Learning from IISc, Bangalore.

Links

Slides

https://drive.google.com/open?id=19fVbkGPGZrc973JVYOZvMCxaDjG78nIA

Comments

{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Make a submission

Accepting submissions till 31 Dec 2020, 11:59 PM

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more