The Fifth Elephant 2017
On data engineering and application of ML in diverse domains
Jul 2017
24 Mon
25 Tue
26 Wed
27 Thu 08:15 AM – 10:00 PM IST
28 Fri 08:15 AM – 06:25 PM IST
29 Sat
30 Sun
On data engineering and application of ML in diverse domains
Jul 2017
24 Mon
25 Tue
26 Wed
27 Thu 08:15 AM – 10:00 PM IST
28 Fri 08:15 AM – 06:25 PM IST
29 Sat
30 Sun
##Theme and format
The Fifth Elephant 2017 is a four-track conference on:
The Fifth Elephant is a conference for practitioners, by practitioners.
Talk submissions are now closed.
You must submit the following details along with your proposal, or within 10 days of submission:
##About the conference
This year is the sixth edition of The Fifth Elephant. The conference is a renowned gathering of data scientists, programmers, analysts, researchers, and technologists working in the areas of data mining, analytics, machine learning and deep learning from different domains.
We invite proposals for the following sessions, with a clear focus on the big picture and insights that participants can apply in their work:
##Selection Process
We will notify you if we move your proposal to the next round or reject it. A speaker is NOT confirmed for a slot unless we explicitly mention so in an email or over any other medium of communication.
Selected speakers must participate in one or two rounds of rehearsals before the conference. This is mandatory and helps you to prepare well for the conference.
There is only one speaker per session. Entry is free for selected speakers.
##Travel grants
Partial or full grants, covering travel and accomodation are made available to speakers delivering full sessions (40 minutes) and workshops. Grants are limited, and are given in the order of preference to students, women, persons of non-binary genders, and speakers from Asia and Africa.
##Commitment to Open Source
We believe in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like for it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), you should consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support the conference in return for giving you an audience. Your session will be marked on the schedule as a “sponsored session”.
##Important Dates:
##Contact
For more information about speaking proposals, tickets and sponsorships, contact info@hasgeek.com or call +91-7676332020.
Hosted by
ankit kohli
@ankitko
Submitted Apr 12, 2017
Here I will try to explain how we use ML to give personalized recommendations to the customers.
Also I will explain how have we setup our Big Data Pipeline using KAFKA , SPARK and HBASE .
The amount of data we process daily and how to we handle anamolies and our learning track .
I will also discuss about vvarious ML Algos that we are using and how to use them in SPARK .
Understanding of Collaborative Filtering ( and it use cases ) and how to use it in SPARK
Data Pipeline Dicussion
Data Modeling - Avro/ Parquet
Discussion over how data from various source ( Real Time & Batch ) is ingested using Kafka ,
transformed using SPARK and stored in HBASE
Then how data is modeled and fed into ML Pipelines using SPARK
And Then about varioud ML Algos that we run to generate personalizations and how it is used in Nearbuy’s World.
Finally, ways to evaluate your ML Algos.
Various Data Sources -> kafka -> Spark -> Hbase
|
ML Lib Algos - Collaborative Filtering
Common Problems that comes in each step
Brief about Kafka , Hbase and in depth about SPARK
Currently, I am employed as a Software Engineer at Nearbuy.In the past I have worked in Practo , Make My Trip.
Currenly my interest is in Big Data and I am actively involved in building projects to better the customer experience.
Working on Machine Learning to develop Personalization at Nearbuy .
I have overall 7 Years of expereince in technology.
https://www.slideshare.net/ankitkohli1/customer-personalization-nearbuy
Jul 2017
24 Mon
25 Tue
26 Wed
27 Thu 08:15 AM – 10:00 PM IST
28 Fri 08:15 AM – 06:25 PM IST
29 Sat
30 Sun
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}