The Fifth Elephant 2017

On data engineering and application of ML in diverse domains

##Theme and format
The Fifth Elephant 2017 is a four-track conference on:

  1. Data engineering – building pipelines and platforms; exposure to latest open source tools for data mining and real-time analytics.
  2. Application of Machine Learning (ML) in diverse domains such as IOT, payments, e-commerce, education, ecology, government, agriculture, computational biology, social network analysis and emerging markets.
  3. Hands-on tutorials on data mining tools, and ML platforms and techniques.
  4. Off-the-record (OTR) sessions on privacy issues concerning data; building data pipelines; failure stories in ML; interesting problems to solve with data science; and other relevant topics.

The Fifth Elephant is a conference for practitioners, by practitioners.

Talk submissions are now closed.

You must submit the following details along with your proposal, or within 10 days of submission:

  1. Draft slides, mind map or a textual description detailing the structure and content of your talk.
  2. Link to a self-record, two-minute preview video, where you explain what your talk is about, and the key takeaways for participants. This preview video helps conference editors understand the lucidity of your thoughts and how invested you are in presenting insights beyond your use case. Please note that the preview video should be submitted irrespective of whether you have spoken at past editions of The Fifth Elephant.
  3. If you submit a workshop proposal, you must specify the target audience for your workshop; duration; number of participants you can accommodate; pre-requisites for the workshop; link to GitHub repositories and documents showing the full workshop plan.

##About the conference
This year is the sixth edition of The Fifth Elephant. The conference is a renowned gathering of data scientists, programmers, analysts, researchers, and technologists working in the areas of data mining, analytics, machine learning and deep learning from different domains.

We invite proposals for the following sessions, with a clear focus on the big picture and insights that participants can apply in their work:

  • Full-length, 40-minute talks.
  • Crisp, 15-minute talks.
  • Sponsored sessions, of 15 minutes and 40 minutes duration (limited slots available; subject to editorial scrutiny and approval).
  • Hands-on tutorials and workshop sessions of 3-hour and 6-hour duration where participants follow instructors on their laptops.
  • Off-the-record (OTR) sessions of 60-90 minutes duration.

##Selection Process

  1. Proposals will be filtered and shortlisted by an Editorial Panel.
  2. Proposers, editors and community members must respond to comments as openly as possible so that the selection processs is transparent.
  3. Proposers are also encouraged to vote and comment on other proposals submitted here.

Selection Process Flowchart

We will notify you if we move your proposal to the next round or reject it. A speaker is NOT confirmed for a slot unless we explicitly mention so in an email or over any other medium of communication.

Selected speakers must participate in one or two rounds of rehearsals before the conference. This is mandatory and helps you to prepare well for the conference.

There is only one speaker per session. Entry is free for selected speakers.

##Travel grants
Partial or full grants, covering travel and accomodation are made available to speakers delivering full sessions (40 minutes) and workshops. Grants are limited, and are given in the order of preference to students, women, persons of non-binary genders, and speakers from Asia and Africa.

##Commitment to Open Source
We believe in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like for it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), you should consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support the conference in return for giving you an audience. Your session will be marked on the schedule as a “sponsored session”.

##Important Dates:

  • Deadline for submitting proposals: June 10
  • First draft of the coference schedule: June 20
  • Tutorial and workshop announcements: June 20
  • Final conference schedule: July 5
  • Conference dates: 27-28 July

For more information about speaking proposals, tickets and sponsorships, contact or call +91-7676332020.

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Santosh GSK


Adapting Bandit Algorithms to optimise user experience at Practo Consult

Submitted Apr 30, 2017

The art of trading between exploiting the best arm versus exploring for further knowledge of other arms has long been studied as Bandit Algorithms in various fields of clinical trials, designing financial portfolios, etc. Recently, in website optimization, these algorithms have been used for optimizing click through rates and performing A/B testing. However, these algorithms has the potential to be applied at several other contexts where we need to optimize for reward by exploring possible arms.

In this talk, I would be presenting an approach based on Contextual Multi-armed Bandit algorithms for achieving a better tradeoff between user’s expectation of faster replies and doctor’s burnout rate on a QnA platform like Practo Consult.


Practo’s Consult platform helps users get their health queries clarified by professional qualified doctors. As we value both users and doctors as our customers, we optimize for enhancing their experience while using Consult. This would entail good quality and faster replies for user’s health queries, whereas doctors expect good quality questions and number of assignments to be correlating with their answering capacity. This is an interesting problem because optimizing for one would compromise the other. For example, if we assign all questions to only the high performing doctors, the remaining non-performing doctors cannot undo their behavior as they won’t get enough questions. Whereas, if we balance the assignment of questions among doctors, it won’t be optimizing for faster replies. Ideally, we want to achieve a tradeoff between the two.


  1. The dynamics of a QnA platform like Practo Consult
  2. Introducing Multi-armed Bandit algorithm
  3. Adapting a version of Bandit algorithm called Contextual Multi-armed Bandit to enhance the experience of users and doctors.

Speaker bio

Santosh GSK is working as a Senior Data Scientist at Practo. He has 5 years of industry experience in Data Science and 3 years as a ML Researcher with half a dozen publications in leading conferences. He is currently working on building data-driven solutions to improve both patient and doctor experience at Practo. Prior to that, he was working as a Data Scientist at, where he worked on lead prediction and property price prediction models.



{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more