Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Tarang Shah
Computer Vision as a field has changed manifold in the past few years. Researchers publish their papers and at times their code for the latest algorithms, but the challenge for the industry remains in applying that research to their processes.
Customising a company’s proprietary data for the research models, implementing their code, and training models is the first big hurdle. Then comes the part where we have to test and release these latest models to production.
In this talk we will go through a project where we did exactly the above at Here Technologies. The audience will learn abot the main issues we faced, how we overcame it and other best practises, including optimising AWS infrastructure for Machine Learning DevOps.
None as such. For the talk, the only pre req is basic knowledge of machine learning terminology.
I’m an engineer involved in computer vision and robotics since 5+ years. I have worked on various computer vision and data science projects including an autonomous soccer playing humanoid(acyut.com), OCR(text extraction/transcription) and object detection models. As a computer vision and data science practitioner who has faced and overcome challenges in production systems, it would be great to share some of that knowledge for the benefit of the community.
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}