Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Make a submission
Accepting submissions till 01 Nov 2019, 04:20 PM
##About the 2019 edition:
The schedule for the 2019 edition is published here: https://hasgeek.com/anthillinside/2019/schedule
The conference has three tracks:
#Who should attend Anthill Inside:
Anthill Inside is a platform for:
For inquiries about tickets and sponsorships, call Anthill Inside on 7676332020 or write to sales@hasgeek.com
#Sponsors:
Sponsorship slots for Anthill Inside 2019 are open. Click here to view the sponsorship deck.
#Bronze Sponsor
#Community Sponsor
Hosted by
Kunal Kishore
@kunalkishore
Submitted Apr 30, 2019
This tutorial shall cover traditional and modern recommendation systems from a perspective of practical application, in an easy question-answer format. The content of this tutorial is derived from multiple state-of-the-art research papers as well as classical text books on recommendation systems.
Questions covered:
Nothing specific. People should have a basic understanding of Machine Learning.
Kunal Kishore completed his Bachelor of technology degree from IIT Kharagpur in Electronics and Communication Engineering. Currently he works as Research Scientist at Inmobi where he leads the data science efforts on Inmobi’s CDP offering. He has previously worked on data science areas such as large scale content recommendation systems, ad response prediction for display advertising bidder and e-commerce product recommendation.
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}