Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Make a submission
Accepting submissions till 01 Nov 2019, 04:20 PM
##About the 2019 edition:
The schedule for the 2019 edition is published here: https://hasgeek.com/anthillinside/2019/schedule
The conference has three tracks:
#Who should attend Anthill Inside:
Anthill Inside is a platform for:
For inquiries about tickets and sponsorships, call Anthill Inside on 7676332020 or write to sales@hasgeek.com
#Sponsors:
Sponsorship slots for Anthill Inside 2019 are open. Click here to view the sponsorship deck.
#Bronze Sponsor
#Community Sponsor
Hosted by
SIDHARTH KUMAR
@sidkumar
Submitted Apr 30, 2019
While feature selection is almost a solved problem in data science, feature engineering is still quite a mystery. In this talk I will outline a method that I use to solve feature engineering, with a goal to provide a generalized framework to tackle both feature engineering and selection simultaneoously.
The first few slides will talk about the application of genetic algorithms (GA) to feature selection. The next couple of slides will talk about advancements made to GAs by use of a multi-dimensional covariance map, a method that I developed. The next couple of slides will talk about genetic programming (GP) and how one can use the multi-dimensional covariance map to augment the convergence of GPs.
A good understanding of machine learning fundamentals
I’m currently a principal data scientist at Intuit. A public but slightly dated bio is available here: https://www.analyticsvidhya.com/datahack-summit-2018/speakers/sidharth-kumar/ An informal writeup on me is available here: http://humansofanalytics.com/stories/sidharth-kumar-data-science-savant-machine-learning-aficionado-and-ardent-chess-player/
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}