Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Tanmoy Bhowmik
Executives now-a-days rely on forecasting approcahes in virtually any decision making. The use cases are ubiquitous in business and technology domains ranging from Demand/Sales forecasting in Supply Chain Management, Hiring/Attrition rate forecasting in HR operations, Predicting the cell traffic or netwrok health parameters for a Telecom business, just to name a few. The challenges faced in forecasting in general, are mainly because of inherent non-linearity and non-stationarity in the time series. In this talk, I will try to walk through a systematic approach for parameter estimation in forecasting of time series data with causal factors available in the light of statistical estimation theory.
I did my PhD in Electrical Engineering from University of Texas at Arlington and am currently working as a Data Scientist in Ericsson Global AI team.
https://drive.google.com/file/d/1ktY2EGDIlaDMl7OBHdpJ4Q9dLsZ55DwB/view?usp=sharing
Nov 2019
18 Mon
19 Tue
20 Wed
21 Thu
22 Fri
23 Sat 08:30 AM – 05:30 PM IST
24 Sun
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}