Anthill Inside 2017

On theory and concepts in Machine Learning, Deep Learning and Artificial Intelligence. Formerly Deep Learning Conf.

##About AnthillInside:
In 2016, The Fifth Elephant branched into a separate conference on Deep Learning. Anthill Inside is the new avataar of the Deep Learning conference.
Anthill Inside attempts to bridge the gap bringing theoretical advances closer to functioning reality.
Proposals are invited for full length talks, crisp talks and poster/demo sessions in the area of ML+DL. The talks need to focus on the techniques used, and may be presented independent of the domain wherein they are applied.
We also invite talks on novel applications of ML+DL, and methods of realising the same in hardware/software.
Case studies of how DL and ML have been applied in different domains will continue to be discussed at The Fifth Elephant.

Topics: we are looking for talks covering the following:

  • Machine Learning with end-to-end application
  • Deep Learning
  • Artificial Intelligence
  • Hardware / software implementations of advanced Machine Learning and Deep Learning
  • IoT and Deep Learning
  • Operations research and Machine Learning

Anthill Inside is a two-track conference:

  • Talks in the main auditorium and hall 2.
  • Birds of Feather (BOF) sessions in expo area.

We are inviting proposals for:

  • Full-length 40-minute talks.
  • Crisp 15-minute how-to talks or introduction to a new technology.
  • Sponsored sessions, of 15 minutes and 40 minutes duration (limited slots available; subject to editorial scrutiny and approval).
  • Hands-on workshop sessions of 3 and 6 hour duration where participants follow instructors on their laptops.
  • Birds of Feather (BOF) sessions.

You must submit the following details along with your proposal, or within 10 days of submission:

  1. Draft slides, mind map or a textual description detailing the structure and content of your talk.
  2. Link to a self-record, two-minute preview video, where you explain what your talk is about, and the key takeaways for participants. This preview video helps conference editors understand the lucidity of your thoughts and how invested you are in presenting insights beyond your use case. Please note that the preview video should be submitted irrespective of whether you have spoken at past editions of The Fifth Elephant or last year at Deep Learning.
  3. If you submit a workshop proposal, you must specify the target audience for your workshop; duration; number of participants you can accommodate; pre-requisites for the workshop; link to GitHub repositories and documents showing the full workshop plan.

##Selection Process:

  1. Proposals will be filtered and shortlisted by an Editorial Panel.
  2. Proposers, editors and community members must respond to comments as openly as possible so that the selection processs is transparent.
  3. Proposers are also encouraged to vote and comment on other proposals submitted here.

We expect you to submit an outline of your proposed talk, either in the form of a mind map or a text document or draft slides within two weeks of submitting your proposal to start evaluating your proposal.

Selection Process Flowchart

You can check back on this page for the status of your proposal. We will notify you if we either move your proposal to the next round or if we reject it. Selected speakers must participate in one or two rounds of rehearsals before the conference. This is mandatory and helps you to prepare well for the conference.

A speaker is NOT confirmed a slot unless we explicitly mention so in an email or over any other medium of communication.

There is only one speaker per session. Entry is free for selected speakers.

We might contact you to ask if you’d like to repost your content on the official conference blog.

##Travel Grants:

Partial or full grants, covering travel and accomodation are made available to speakers delivering full sessions (40 minutes) and workshops. Grants are limited, and are given in the order of preference to students, women, persons of non-binary genders, and speakers from Asia and Africa.

##Commitment to Open Source:

We believe in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like for it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), you should consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support the conference in return for giving you an audience. Your session will be marked on the schedule as a “sponsored session”.

##Important Dates:

  • Deadline for submitting proposals: July 10
  • First draft of the coference schedule: July 15
  • Tutorial and workshop announcements: June 30
  • Final conference schedule: July 20
  • Conference date: July 30


For more information about speaking proposals, tickets and sponsorships, contact or call +91-7676332020.

Please note, we will not evaluate proposals that do not have a slide deck and a video in them.

Hosted by

Anthill Inside is a forum for conversations about Artificial Intelligence and Deep Learning, including: Tools Techniques Approaches for integrating AI and Deep Learning in products and businesses. Engineering for AI. more

Anuj Gupta


Learning representations of text for NLP

Submitted Apr 20, 2017

Think of your favorite NLP application that you wish to build - sentiment analysis, named entity recognition, machine translation, information extraction, summarization, recommender system, to name a few. A key step to building it is - using the right technique to represent the text in a form that machine can understand. In this workshop, we will understand key concepts, maths, and code behind state-of-the-art techniques for text representation.

This will be a very hands-on workshop with jupyter notebooks to create various representations, coupled with the key concepts & maths that forms the basis of their respective theory.


Deep Learning in Images has had a phenomenal success story. One of the key reasons for it is: Rich representation of data - raw image in matrix form with RGB values.

While in images, directly using the pixel values is a very natural representation; However, when it comes to text, there is no such natural representation. No matter how good is your ML algorithm, it can do only so much unless there is a richer way to represent underlying text data. Thus, whatever NLP task/application you are building, it’s imperative to find a good representation for your text. Motivated from this, the subfield of representation learning of text for NLP has attracted a lot of interest in the past few years.

__ Various representation learning techniques have been proposed in literature, but still there is a dearth of comprehensive tutorials that provides full coverage with the mathematical explanation and implementation details of these algorithms to a satisfactory depth. __ This workshop aims to bridge this gap. This workshop aims ot demystify, both - Theory (key concepts, maths) and Practice (code) that goes into these various representation schemes. At the end of workshop participants would have gained a fundamental understanding of these schemes and will be able to implement embeddings on their datasets.

We will cover the following topics:

  1. Old ways of representing text

  2. Introduction to Embedding spaces

  3. Word-Vectors

  4. Sentence2vec/Paragraph2vec/Doc2Vec

  5. Character2Vec

For each of the above representation scheme, we will understand and implement both - evaluation and visualization techniques.

Target audience: This workshop is meant for NLP enthusiast, ML practitioners, Data science teams who work with text data and wish to gain a deeper understanding of text representations for NLP.


Laptop and Lots of enthusiasm
We will provide pre installed virtual machine which will help you get started without fuss.

Speaker bio

  1. Anuj Gupta is a senior ML researcher at Freshdesk; working in the area NLP, Machine Learning, Deep learning. Earlier he was heading ML efforts at Airwoot(Now acquired by Freshdesk). He dropped out of Phd in ML to work with startups. He graduated from IIIT H with specialization in theoretical comp science.

He has given tech talks at prestigious forums like PyData DC, Fifth Elphant, ICDCN, PODC, IIT Delhi, IIIT Hyderabad and special interest groups like DLBLR. More about him -

  1. Satyam Saxena is a ML researcher at Freshdesk. An IIT alumnus, his interest lie in NLP, Machine Learning, Deep Learning. Prior to this, he was a part of ML group Cisco. He was a visiting researcher at Vision Labs in IIIT Hyd where he used computer vision and deep learning to build applications to assisting visually impaired people. He presented some of this work at ICAT 2014, Turkey.
  • Coming soon



{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Hosted by

Anthill Inside is a forum for conversations about Artificial Intelligence and Deep Learning, including: Tools Techniques Approaches for integrating AI and Deep Learning in products and businesses. Engineering for AI. more