Jul 2016
27 Mon
28 Tue
29 Wed
30 Thu
1 Fri 08:45 AM – 06:15 PM IST
2 Sat 08:15 AM – 02:15 PM IST
3 Sun
Jul 2016
27 Mon
28 Tue
29 Wed
30 Thu
1 Fri 08:45 AM – 06:15 PM IST
2 Sat 08:15 AM – 02:15 PM IST
3 Sun
Deep Learning is a new area of research that is getting us closer in achieving one of the primary objectives of Machine Learning – Artificial Intelligence.
It is used widely in the fields of Image Recognition, Natural Language Processing (NLP) and Video Classification.
Deep Learning Conf is a single day conference followed by workshops on the second day. The conference will have full, crisp and lightning talks from morning to evening. The workshops on the next day will introduce participants to neural networks followed by two tracks of three-hour workshops on NLP and Computer Vision / AI. Participants can join either one of the two workshop tracks.
##Tracks
We are looking for talks and workshops from academics and practitioners of Deep Learning on the following topics:
We are inviting proposals for:
Proposals will be filtered and shortlisted by an Editorial Panel. Along with your proposal, you must share the following details:
If your proposal involves speaking about a library / tool / software that you intend to open source in future, the proposal will be considered only when the library / tool / software in question is made open source.
We will notify you about the status of your proposal within two-three weeks of submission.
Selected speakers have to participate in one-two rounds of rehearsals before the conference. This is mandatory and helps you prepare for speaking at the conference.
There is only one speaker per session. Entry is free for selected speakers. As our budget is limited, we will prefer speakers from locations closer home, but will do our best to cover for anyone exceptional. HasGeek will provide a grant to cover part of your travel and accommodation in Bangalore. Grants are limited and made available to speakers delivering full sessions (40 minutes or longer).
HasGeek believes in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), please consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support us in return for giving you an audience. Your session will be marked on the schedule as a sponsored session.
##Venue
CMR Institute of Technology, Bangalore
##Contact
For more information about speaking proposals, tickets and sponsorships, contact info@hasgeek.com or call +91-7676332020.
Hosted by
Sundara R Nagalingam
@nsundarrl
Submitted May 31, 2016
NVIDIA has for long been a pioneer in providing the tools to facilitate deep learning. At the heart of deep learning lies the need to train Deep Neural Networks and then have these DNNs perform complex compute tasks in the shortest possible time. NVIDIA has made huge advances in developing a comprehensive software development kit, aimed at helping developers train DNNs at speeds that keep beating previous records. The solution includes cuDNN, cuSPARSE and cuBLAS libraries, DIGITS for training and NCCL to scale up the performance across multiple GPUs. Combined with the immense power of Tesla GPUs built on the newly launched Pascal architecture, this entire combination helps achieve the end goal of bigger and better DNNs driving deep learning problems across multiple domains. Customers such as Facebook, amongst many, are harnessing NVIDIA’s deep learning solutions to provide end user impact via their applications. In India, smart startups leverage our technology to develop intelligent solutions in the consumer space, intelligent video analytics, security, smart search and many more.
Evolution of Deep Learning (DL) techniques - Over view of modern DL stack (software and hardware)- Advances in GPU computation and how it helps to dramatically bring down DL training time - Modern tools CuDNN, CuSPARSE, cuBLAS, DIGITS-NCCL to improve intranode and internode scaling - Success Stories - DL Ecosystem in India from Enteprise and Startups perspective.
Mr. Sundara R Nagalingam is the Head of Manufacturing and Energy businesses for NVIDIA India. He is also responsible for managing the Deep Learning business ecosystem for the company.
He has twenty years of experience in solutions involving Visual Computing, Virtualization and High Performance Computing. He also has exposure to the work cultures of multiple countries in the Asia Pacific region.
He has a strong technical background and his areas of interest include Deep Learning, Big Data Analytics, IoT and Automotive Solutions.
Jul 2016
27 Mon
28 Tue
29 Wed
30 Thu
1 Fri 08:45 AM – 06:15 PM IST
2 Sat 08:15 AM – 02:15 PM IST
3 Sun
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}