Deep Learning Conf 2016

A conference on deep learning.

Make a submission

Submissions are closed for this project

CMRIT College

Deep Learning is a new area of research that is getting us closer in achieving one of the primary objectives of Machine Learning – Artificial Intelligence.
It is used widely in the fields of Image Recognition, Natural Language Processing (NLP) and Video Classification.


Deep Learning Conf is a single day conference followed by workshops on the second day. The conference will have full, crisp and lightning talks from morning to evening. The workshops on the next day will introduce participants to neural networks followed by two tracks of three-hour workshops on NLP and Computer Vision / AI. Participants can join either one of the two workshop tracks.


We are looking for talks and workshops from academics and practitioners of Deep Learning on the following topics:

  • Applications of Deep Learning in software.
  • Applications of Deep Learning in hardware.
  • Conceptual talks and cutting edge research on Deep Learning.
  • Building businesses with Deep Learning at the core.

We are inviting proposals for:

  • Full-length 40 minute talks.
  • Crisp 15-minute talks.
  • Lightning talks of 5 mins duration.

Selection process

Proposals will be filtered and shortlisted by an Editorial Panel. Along with your proposal, you must share the following details:

  • Links to videos / slide decks when submitting proposals. This will help us understand your past speaking experience.
  • Blog posts you may have written related to your proposal.
  • Outline of your proposed talk – either in the form of a mind map or a text document or draft slides.

If your proposal involves speaking about a library / tool / software that you intend to open source in future, the proposal will be considered only when the library / tool / software in question is made open source.

We will notify you about the status of your proposal within two-three weeks of submission.

Selected speakers have to participate in one-two rounds of rehearsals before the conference. This is mandatory and helps you prepare for speaking at the conference.

There is only one speaker per session. Entry is free for selected speakers. As our budget is limited, we will prefer speakers from locations closer home, but will do our best to cover for anyone exceptional. HasGeek will provide a grant to cover part of your travel and accommodation in Bangalore. Grants are limited and made available to speakers delivering full sessions (40 minutes or longer).

Commitment to open source

HasGeek believes in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), please consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support us in return for giving you an audience. Your session will be marked on the schedule as a sponsored session.

Key dates and deadlines

  • Proposal submission deadline: 31 May 2016
  • Schedule announcement: 15 June 2016
  • Conference dates: 1 July 2016


CMR Institute of Technology, Bangalore


For more information about speaking proposals, tickets and sponsorships, contact or call +91-7676332020.

Hosted by

The Fifth Elephant - known as one the best #datascience and #machinelearning conference in Asia - is transitioning into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Anuj Gupta

@anuj-gupta Proposing

Debugging DeepNets - practitioners black book

Submitted May 13, 2016

Secret Sauce to Building production quality Deep Nets


It will be great if someone can present a talk on the following points

  • Visualize if the weights have saturated
  • Visualize if the gradients have diminished(0) or exploded
  • Strategies to prevent the network from going into state where gradients have diminished(0) or exploded
  • Strategies to recover when gradients have diminished(0) or exploded (gradient clipping)
  • Good toolkits for early diagnosis and Visualization
  • detect bad initialisations
  • Strategies to prevent overfitting
  • badly conditioned activations
  • handle unbalanced datasets
  • Other Do’s and Dont’s and other Dark Arts to build good DeepNets

Speaker bio

Anuj is heading Deep Learning efforts at Freshdesk. you can find more about me on


{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Aakanksha Bapna

Automated Interior Designing using Bayesian networks

I’ll be presenting about an almost completely automated intelligent system that produces realistic and aesthetically appealing interior designs for homes. The particularly striking feature of our system is that it generates multiple plausible options for an empty room. The relationships between different elements of a room and items placed in the room are represented as Bayesian networks. The cau… more

16 May 2016