The Fifth Elephant 2017
On data engineering and application of ML in diverse domains
Jul 2017
24 Mon
25 Tue
26 Wed
27 Thu 08:15 AM – 10:00 PM IST
28 Fri 08:15 AM – 06:25 PM IST
29 Sat
30 Sun
On data engineering and application of ML in diverse domains
Jul 2017
24 Mon
25 Tue
26 Wed
27 Thu 08:15 AM – 10:00 PM IST
28 Fri 08:15 AM – 06:25 PM IST
29 Sat
30 Sun
##Theme and format
The Fifth Elephant 2017 is a four-track conference on:
The Fifth Elephant is a conference for practitioners, by practitioners.
Talk submissions are now closed.
You must submit the following details along with your proposal, or within 10 days of submission:
##About the conference
This year is the sixth edition of The Fifth Elephant. The conference is a renowned gathering of data scientists, programmers, analysts, researchers, and technologists working in the areas of data mining, analytics, machine learning and deep learning from different domains.
We invite proposals for the following sessions, with a clear focus on the big picture and insights that participants can apply in their work:
##Selection Process
We will notify you if we move your proposal to the next round or reject it. A speaker is NOT confirmed for a slot unless we explicitly mention so in an email or over any other medium of communication.
Selected speakers must participate in one or two rounds of rehearsals before the conference. This is mandatory and helps you to prepare well for the conference.
There is only one speaker per session. Entry is free for selected speakers.
##Travel grants
Partial or full grants, covering travel and accomodation are made available to speakers delivering full sessions (40 minutes) and workshops. Grants are limited, and are given in the order of preference to students, women, persons of non-binary genders, and speakers from Asia and Africa.
##Commitment to Open Source
We believe in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like for it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), you should consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support the conference in return for giving you an audience. Your session will be marked on the schedule as a “sponsored session”.
##Important Dates:
##Contact
For more information about speaking proposals, tickets and sponsorships, contact info@hasgeek.com or call +91-7676332020.
Hosted by
PadmaCh
@padmach
Submitted Apr 25, 2017
Ensemble learning is the process by which multiple machine-learning models are evaluated and combined to help build a combined model that provides better results. Building these models require experimenting with not just multiple Machine-Learning models, but also with various model-parameters that help build good individual models.
In this talk, we will share how did we built an automated machine-learning pipeline to help evaluate multiple machine learning models and model parameters. The purchase propensity model used multiple ML techniques, ranging from regression techniques to Random-Forest based classifiers and helped build a machine-learning ensemble model over 100’s of millions of transaction data-points. The system that was built provided an ability to scale, both for the various modelling combinations available, and for the size of the datasets involved. We will discuss on how did we employ best practices in Spark during every step of building scalable models.
Performing Exploratory Data Analysis using Spark.
Discussion on commonly encountered issues during feature engineering.
Discussion over various classification techniques including-
Logistic regression (experimenting with regularization parameters to avoid overfitting)
Random forests
GBM
Addressing technical challenges in performing K-fold cross-validation.
Search for optimal parameters for modeling using Grid-search
Ensemble based approaches (bagging & self-training) using Spark.
Padma Chitturi is Lead Engineer at Fractal Analytics Pvt Ltd and has over five years of experience in large scale data processing. She has authored the book “Apache Spark for Data Science Cookbook”. Currently, she is part of capability development at Fractal and responsible for solution development for analytical problems across multiple business domains at large scale. Prior to this, she worked for an Airlines product on a real-time processing platform at Amadeus Software Labs. She has worked on realizing large-scale deep networks (Jeffrey dean’s work in Google brain) for image classification on the big data platform Spark at Impetus. She works closely with Kafka, Spark, Storm, Cassandra, Hadoop, Deep Learning, Computer Vision and Real-time streaming. She was an open source contributor to Apache Storm.
www.linkedin.com/in/padmachitturi
https://drive.google.com/file/d/0B-rWMe2CC0Z4UnFrNEtRQlNTRlU/view?usp=sharing
Jul 2017
24 Mon
25 Tue
26 Wed
27 Thu 08:15 AM – 10:00 PM IST
28 Fri 08:15 AM – 06:25 PM IST
29 Sat
30 Sun
Hosted by
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}