The Fifth Elephant 2016

India's most renowned data science conference

Make a submission

Submissions are closed for this project

NIMHANS Convention Centre

The Fifth Elephant is India’s most renowned data science conference. It is a space for discussing some of the most cutting edge developments in the fields of machine learning, data science and technology that powers data collection and analysis.

Machine Learning, Distributed and Parallel Computing, and High-performance Computing continue to be the themes for this year’s edition of Fifth Elephant.

We are now accepting submissions for our next edition which will take place in Bangalore 28-29 July 2016.

Tracks

We are looking for application level and tool-centric talks and tutorials on the following topics:

  1. Deep Learning
  2. Text Mining
  3. Computer Vision
  4. Social Network Analysis
  5. Large-scale Machine Learning (ML)
  6. Internet of Things (IoT)
  7. Computational Biology
  8. ML in healthcare
  9. ML in education
  10. ML in energy and ecology
  11. ML in agriculrure
  12. Analytics for emerging markets
  13. ML in e-governance
  14. ML in smart cities
  15. ML in defense

The deadline for submitting proposals is 30th April 2016

Format

This year’s edition spans two days of hands-on workshops and conference. We are inviting proposals for:

  • Full-length 40 minute talks.
  • Crisp 15-minute talks.
  • Sponsored sessions, 15 minute duration (limited slots available; subject to editorial scrutiny and approval).
  • Hands-on Workshop sessions, 3 and 6 hour duration.

Selection process

Proposals will be filtered and shortlisted by an Editorial Panel. We urge you to add links to videos / slide decks when submitting proposals. This will help us understand your past speaking experience. Blurbs or blog posts covering the relevance of a particular problem statement and how it is tackled will help the Editorial Panel better judge your proposals.

We expect you to submit an outline of your proposed talk – either in the form of a mind map or a text document or draft slides within two weeks of submitting your proposal.

We will notify you about the status of your proposal within three weeks of submission.

Selected speakers must participate in one-two rounds of rehearsals before the conference. This is mandatory and helps you to prepare well for the conference.

There is only one speaker per session. Entry is free for selected speakers. As our budget is limited, we will prefer speakers from locations closer home, but will do our best to cover for anyone exceptional. HasGeek will provide a grant to cover part of your travel and accommodation in Bangalore. Grants are limited and made available to speakers delivering full sessions (40 minutes or longer).

Commitment to open source

HasGeek believes in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), please consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support us in return for giving you an audience. Your session will be marked on the schedule as a sponsored session.

Key dates and deadlines

  • Revised paper submission deadline: 17 June 2016
  • Confirmed talks announcement (in batches): 13 June 2016
  • Schedule announcement: 30 June 2016
  • Conference dates: 28-29 July 2016

Venue

The Fifth Elephant will be held at the NIMHANS Convention Centre, Dairy Circle, Bangalore.

Contact

For more information about speaking proposals, tickets and sponsorships, contact info@hasgeek.com or call +91-7676332020.

Hosted by

The Fifth Elephant - known as one the best #datascience and #machinelearning conference in Asia - is transitioning into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Anand Chandrasekaran

@anandchandrasekaran

Deep Learning for Computer Vision

Submitted Jun 23, 2016

One of the fields that have benefited the most from the rise of Deep Learning has been Computer Vision. The goal of this workshop is to have participants go from the basics to tackling a problem that might solve a real world problem.

Outline

Some of the theory covered will be:

  1. From neurons to networks, a full overview of the nuts and bolts.
  2. Types of networks, from RBMs to CNNs to RNNs.
  3. How they are used in the world of CV. A discussion of what works and what doesn’t.
  4. The fundamentals of training Deep Learning networks.
  5. On existing frameworks and using GPUs.

A relatively large number of potential projects will be available for the workshop, and the participants will have access to AWS ec2 GPU instances for training and testing.
Some Potential workshop projects:

  1. Toy problems exploring the different architectures and relative merits.
  2. Real world classification problems solved with different architectures.
  3. Exploring novel and hybrid architectures (if time permits).

Requirements

The participants need a laptop with:

  1. Python 2.7
  2. Numpy 1.8+
  3. OpenCV 2.4.9+

For the heavy lifting, AWS instances with all the dependencies and the datasets will be setup for participants to focus on their python scripts, and not worry about installations.
For the intrepid, with their own GPU laptops we can provide instructions for local installations of any framework used, as well as the data sets.

Speaker bio

Dr. Anand Chandrasekaran is a founder and the CTO of Mad Street Den, an AI company specializing in computer vision. In addition to an academic background in the fields of neuroscience and neuromorphic engineering, he has been a member of teams working on DARPA projects in cognition and vision.

Comments

{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Nishant Bangarwa

Scalable Realtime Analytics using Druid

Traditional SaaS solutions based on hadoop datastore Hive/Hbase or classical RDBMS work well for storing data, although they are not optimized for ingesting data and making it immediately available for interactive ad-hoc low latency queries at a very high scale. Long query latencies make these solutions suboptimal choices to power interactive applications. This talk will introduce Druid as a comp… more

06 Jul 2016