Jul 2013
8 Mon
9 Tue
10 Wed
11 Thu 09:30 AM – 04:30 PM IST
12 Fri 10:15 AM – 05:30 PM IST
13 Sat 10:15 AM – 05:30 PM IST
14 Sun
Pranav Modi
Understand time series analysis and its applications in industry and science. Uncover patterns in data - trends, seasonality, cyclical behavior.
Learn intuitive visualization techniques. Methods for noise reduction, clustering of time series using shape analysis.
Catch the R ‘forecast’ package in action.
Description : A time series is a sequence of observations which are ordered in time (or space). Examples of time series data include -
Business data - demand data, sales, inventory management.
Neuroscience data - EEG, EKG
Financial data - stock prices, currencies, derivatives
Climate data - tide levels, sunspots.
You will learn how to approach time series analysis, extract patterns and make predictions that have a huge impact.
Not a prerequisite, but exposure to R will help.
I work as a data scientist at a large consulting firm where we are frequently consulted on time series forecasting problems. This talk is distilled out of my experiments with time series analysis and learnings so far.
I am a functional programming enthusiast who has ventured into machine learning and data analysis. At my previous company Runa I worked on machine learning while hacking lisp! I’d be happy to share my experiences with Clojure and self-learning adventures in data analysis as well.
{{ gettext('Login to leave a comment') }}
{{ gettext('Post a comment…') }}{{ errorMsg }}
{{ gettext('No comments posted yet') }}