The Fifth Elephant 2017

On data engineering and application of ML in diverse domains

##Theme and format
The Fifth Elephant 2017 is a four-track conference on:

  1. Data engineering – building pipelines and platforms; exposure to latest open source tools for data mining and real-time analytics.
  2. Application of Machine Learning (ML) in diverse domains such as IOT, payments, e-commerce, education, ecology, government, agriculture, computational biology, social network analysis and emerging markets.
  3. Hands-on tutorials on data mining tools, and ML platforms and techniques.
  4. Off-the-record (OTR) sessions on privacy issues concerning data; building data pipelines; failure stories in ML; interesting problems to solve with data science; and other relevant topics.

The Fifth Elephant is a conference for practitioners, by practitioners.

Talk submissions are now closed.

You must submit the following details along with your proposal, or within 10 days of submission:

  1. Draft slides, mind map or a textual description detailing the structure and content of your talk.
  2. Link to a self-record, two-minute preview video, where you explain what your talk is about, and the key takeaways for participants. This preview video helps conference editors understand the lucidity of your thoughts and how invested you are in presenting insights beyond your use case. Please note that the preview video should be submitted irrespective of whether you have spoken at past editions of The Fifth Elephant.
  3. If you submit a workshop proposal, you must specify the target audience for your workshop; duration; number of participants you can accommodate; pre-requisites for the workshop; link to GitHub repositories and documents showing the full workshop plan.

##About the conference
This year is the sixth edition of The Fifth Elephant. The conference is a renowned gathering of data scientists, programmers, analysts, researchers, and technologists working in the areas of data mining, analytics, machine learning and deep learning from different domains.

We invite proposals for the following sessions, with a clear focus on the big picture and insights that participants can apply in their work:

  • Full-length, 40-minute talks.
  • Crisp, 15-minute talks.
  • Sponsored sessions, of 15 minutes and 40 minutes duration (limited slots available; subject to editorial scrutiny and approval).
  • Hands-on tutorials and workshop sessions of 3-hour and 6-hour duration where participants follow instructors on their laptops.
  • Off-the-record (OTR) sessions of 60-90 minutes duration.

##Selection Process

  1. Proposals will be filtered and shortlisted by an Editorial Panel.
  2. Proposers, editors and community members must respond to comments as openly as possible so that the selection processs is transparent.
  3. Proposers are also encouraged to vote and comment on other proposals submitted here.

Selection Process Flowchart

We will notify you if we move your proposal to the next round or reject it. A speaker is NOT confirmed for a slot unless we explicitly mention so in an email or over any other medium of communication.

Selected speakers must participate in one or two rounds of rehearsals before the conference. This is mandatory and helps you to prepare well for the conference.

There is only one speaker per session. Entry is free for selected speakers.

##Travel grants
Partial or full grants, covering travel and accomodation are made available to speakers delivering full sessions (40 minutes) and workshops. Grants are limited, and are given in the order of preference to students, women, persons of non-binary genders, and speakers from Asia and Africa.

##Commitment to Open Source
We believe in open source as the binding force of our community. If you are describing a codebase for developers to work with, we’d like for it to be available under a permissive open source licence. If your software is commercially licensed or available under a combination of commercial and restrictive open source licences (such as the various forms of the GPL), you should consider picking up a sponsorship. We recognise that there are valid reasons for commercial licensing, but ask that you support the conference in return for giving you an audience. Your session will be marked on the schedule as a “sponsored session”.

##Important Dates:

  • Deadline for submitting proposals: June 10
  • First draft of the coference schedule: June 20
  • Tutorial and workshop announcements: June 20
  • Final conference schedule: July 5
  • Conference dates: 27-28 July

##Contact
For more information about speaking proposals, tickets and sponsorships, contact info@hasgeek.com or call +91-7676332020.

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more

Kumar Shubham

@kumar_shubham

Augmenting Solr’s NLP Capabilities with Deep-Learning Features to Match Images

Submitted Jun 9, 2017

Matching images with human-like accuracy is typically extremely expensive. A lot of GPU resources and training data are required for the deep-learning model to perform image-matching. While GPU is something that most companies can afford, training data is hard to obtain.

At DataWeave, we crawl millions of products listed across e-commerce websites, and match them to deliver competitive insights to our clients. In the fashion vertical, however, text matching alone is insufficient to accurately match products, as product descriptions are usually not detailed enough.

We asked ourselves, is there any way of complementing information from product descriptions and titles to improve the accuracy of image-matching?

Solr is a popular text search engine known for its NLP capabilities. This talk will present an innovative way of storing deep-learning features in Solr, and augmenting Solr’s NLP capabilities to achieve elevated levels of accuracy in our product matching efforts.

Outline

  1. Searching similar and exact images using deep learning (Importance and problems associated)
  2. Solr – a popular text search engine
  3. Augmenting Solr with Deep learning features
  4. Self-taught hashing
  5. Performance metrics
  6. Demo

Speaker bio

I work as a data engineer at DataWeave, a company that provides Competitive Intelligence as a Service for retailers and consumer brands. Here, I helped develop deep learning and machine-learning infrastructure for large scale product matching capabilities.

I am a keen enthusiast of open source projects, and have been closely associated with a project that integrated TensorFlow with DeepDetect.

I was among the top-5 finalists in the Xerox Research Innovation Challenge - 2016, and winner of the Jaipur Hackathon -2015. One of my projects - sign language converter (SLC) - was among the semi-final entries at TI Innovation Challenge India Design Contest 2015.

I have also co-authored publications that have been accepted in Applied Intelligence, Knowledge Based System, and International Conference of Machine-Learning and Cybernetics.

Slides

https://drive.google.com/file/d/0ByAaSdfBUHSVN2QwN0UyLW1IaFk/view?usp=sharing

Comments

{{ gettext('Login to leave a comment') }}

{{ gettext('Post a comment…') }}
{{ gettext('New comment') }}
{{ formTitle }}

{{ errorMsg }}

{{ gettext('No comments posted yet') }}

Hosted by

The Fifth Elephant - known as one of the best data science and Machine Learning conference in Asia - has transitioned into a year-round forum for conversations about data and ML engineering; data science in production; data security and privacy practices. more